Hall Ticket Number:

Time: 3 hours

i.

Code No. : 1112N

VASAVI COLLEGE OF ENGINEERING (Autonomous), HYDERABAD B.E. I Year I - Semester (New) Examinations, December - 2015

Mathematics-I

Max. Marks: 50

Note: Answer ALL questions in Part-A and any FIVE questions from Part-B

Part-A (15 Marks)

1.	Examine whether the vectors $u = (1, 1, 1)$, $v = (1, -1, 2)$ and $w = (3, 1, 4)$ are linearly independent.	[1]	
2.	State the p-series test and use it to examine the convergence of the series: $\sum_{n=1}^{\infty} \frac{\sqrt{n}}{n^2 + 1}$	[1]	
3.	Write the formulae for the radius of curvature in (a) Cartesian form and (b) Parametric form.	[1]	
4.	If $u = xe^{y}z$ and $y = \sqrt{a^2 - x^2}$, $z = sin^2 x$, find $\frac{du}{dx}(0, 1, 1)$.	[1]	
5.	Evaluate $\int_{0}^{5} \int_{0}^{x^{2}} x (x^{2} + y^{2}) dy dx$.	[1]	
6.	Define the rank of the matrix and find the rank of the matrix $\begin{bmatrix} 1 & 2 & 3 \\ 1 & 4 & 2 \\ 2 & 6 & 5 \end{bmatrix}$.	[2]	
7.	Test for convergence of the series $\sum \left(1 + \frac{1}{\sqrt{n}}\right)^{-n^{3/2}}$	[2]	
8.	Find the Taylor's Series expansion of $f(x)=2^x$ about x=0.	[2]	
9.	If $u = x^2 - 2y$, $v = x + y$, find $\frac{\partial(u,v)}{\partial(x,y)}$.	[2]	
10.	Evaluate $\int \int xy(x + y) dx dy$ over the area between $y = x^2$, $y = x$.	[2]	
Part-B (5 X 7=35 Marks)			
11	1. a) Find the characteristic equation of matrix $A = \begin{bmatrix} 2 & 1 & 1 \\ 0 & 1 & 0 \\ 1 & 1 & 2 \end{bmatrix}$ and hence find the inverse of A.	[3]	
	b) Find the values of 'k' for which the system of equations $(3k - 8)x + 3y + 3z = 0$,		
	3x + (3k - 8)y + 3z = 0, 3x + 3y + (3k - 8)z = 0 has a non-trivial solution.	[4]	
12. Test for the convergence of the series :			
	a) $\sum_{n=1}^{\infty} \frac{n!}{(n^n)^2}$.	[3]	
	\sqrt{n}		

b) $\sum_{n=1}^{\infty} \frac{\sqrt{n}}{\sqrt{n^2+1}} x^n$. [4]

Contd....2

Code No. : 1112N

13. a) Show that the evolute of the curve $x=a(\cos t + \log \tan \frac{t}{2})$, $y = a \sin t$ is the catenary $y = \cosh(x/a)$.	[4]
b) Find the envelope of the family of straight line $\frac{x}{a} + \frac{y}{b} = 1$, where a, b connected by the relation	
a+b=c, 'c' is a constant.	[3]
14. a) Expand $f(x,y) = e^x \cos y$ at $(1, \pi/4)$ upto second degree.	[3]
b) Find the extreme value of the function $f(x,y) = 3x^2 - y^2 + x^3$	[4]
15. a) Find the area lying between the parabola $y = 4x - x^2$ and the line $y = x$.	[3]
b) Find the volume of the region bounded by $z = x^2 + y^2$, $z = 0$, $x = -a$, $x = a$ and $y = -a$, $y = a$.	[4]
16. a) Reduce $3x^2+3z^2+4xy+8xz+8yz$ into canonical form.	[3]
b) Test the series for convergence $\frac{x}{1.3} + \frac{x^2}{3.5} + \frac{x^3}{5.7} + \dots \infty$.	[4]
17. Answer any two of the following:	[7]
a) Find the equation of the circle of curvature of the curve $\sqrt{x} + \sqrt{y} = \sqrt{a}$ at the point $\left(\frac{a}{4}, \frac{a}{4}\right)$.	
b) Find the minimum value of $x^2 + y^2 + z^2$ so that $xyz = 8$.	
c) Evaluate $\int_0^3 \int_1^{\sqrt{4-y}} (x+y) dx dy$ by changing the order of integration.	

::2::

1/4 I Semi