

Code No. : 1112N

; VASAVI COLLEGE OF ENGINEERING (Autonomous), HYDERABAD
 B.E. I Year I - Semester (New) Examinations, December - 2015
 Mathematics-I

Time: $\mathbf{3}$ hours
Max. Marks: 50
Note: Answer ALL questions in Part-A and any FIVE questions from Part-B Part-A (15 Marks)

1. Examine whether the vectors $u=(1,1,1), v=(1,-1,2)$ and $w=(3,1,4)$ are linearly independent.
2. State the p-series test and use it to examine the convergence of the series: $\sum_{n=1}^{\infty} \frac{\sqrt{n}}{n^{2}+1}$.
3. Write the formulae for the radius of curvature in (a) Cartesian form and (b) Parametric form.
4. If $u_{i}=x e^{y} Z$ and $y=\sqrt{a^{2}-x^{2}}, z=\sin ^{2} x$, find $\frac{d u}{d x}(0,1,1)$.
5. Evaluate $\int_{0}^{5} \int_{0}^{x^{2}} x\left(x^{2}+y^{2}\right) d y d x$.
6. Define the rank of the matrix and find the rank of the matrix $\left[\begin{array}{lll}1 & 2 & 3 \\ 1 & 4 & 2 \\ 2 & 6 & 5\end{array}\right]$.
7. Test for convergence of the series $\sum\left(1+\frac{1}{\sqrt{n}}\right)^{-n^{3 / 2}}$
8. Find the Taylor's Series expansion of $f(x)=2^{x}$ about $x=0$.
9. If $u=x^{2}-2 y, v=x+y$, find $\frac{\partial(u, v)}{\partial(x, y)}$.
10. Evaluate $\iint x y(x+y) d \mathrm{~d}$ dy over the area between $\mathrm{y}=x^{2}, \mathrm{y}=\mathrm{x}$.

Part-B (5 X $7=35$ Marks)

11.a) Find the characteristic equation of matrix $A=\left[\begin{array}{lll}2 & 1 & 1 \\ 0 & 1 & 0 \\ 1 & 1 & 2\end{array}\right]$ and hence find the inverse of A.
b) Find the values of ' k ' for which the system of equations $(3 k-8) x+3 y+3 z=0$, $3 x+(3 k-8) y+3 z=0,3 x+3 y+(3 k-8) z=0$ has a non-trivial solution.
12. Test for the convergence of the series:
a) $\sum_{n=1}^{\infty} \frac{n!}{\left(n^{n}\right)^{2}}$.
b) $\sum_{n=1}^{\infty} \frac{\sqrt{n}}{\sqrt{n^{2}+1}} x^{n}$.
13. a) Show that the evolute of the curve $x=a\left(\cos t+\log \tan \frac{t}{2}\right), y=a \operatorname{sint}$ is the catenary $y=\cosh (x / a)$.
b) Find the envelope of the family of straight line $\frac{x}{a}+\frac{y}{b}=1$, where a, b connected by the relation $a+b=c, \quad c$ ' is a constant.
14. a) Expand $f(x, y)=e^{x} \cos y$ at $(1, \pi / 4)$ upto second degree.
b) Find the extreme value of the function $f(x, y)=3 x^{2}-y^{2}+x^{3}$
15. a) Find the area lying between the parabola $y=4 x-x^{2}$ and the line $y=x$.
b) Find the volume of the region bounded by $z=x^{2}+y^{2}, z=0, x=-a, x=a$ and $y=-a, y=a$.
16. a) Reduce $3 x^{2}+3 z^{2}+4 x y+8 x z+8 y z$ into canonical form.
b) Test the series for convergence $\frac{x}{1.3}+\frac{x^{2}}{3.5}+\frac{x^{3}}{5.7}+\ldots . \infty$.
17. Answer any two of the following:
a) Find the equation of the circle of curvature of the curve $\sqrt{x}+\sqrt{y}=\sqrt{a}$ at the point $\left(\frac{a}{4}, \frac{a}{4}\right)$.
b) Find the minimum value of $x^{2}+y^{2}+z^{2}$ so that $x y z=8$.
c) Evaluate $\int_{0}^{3} \int_{1}^{\sqrt{4-y}}(x+y) d x d y$ by changing the order of integration.

